MSCD Sample Data Files


  1. Sample: Bohr-Rydberg format atomic potential data file
  2. Sample: MSCD format atomic potential data file
  3. Sample: Atomic phase shift data file
  4. Sample: Atomic radial matrix data file
  5. Sample: single-curve experimental photoelectron diffraction data file
  6. Sample: multi-curve experimental photoelectron diffraction data file
  7. Sample: multi-curve calculated photoelectron diffraction data file
  8. Sample: Batch input data file for MSCD calculation
  9. Sample: Input file for phase shift and radial matrix element calculation
  10. Sample: Input data file for hologram transformation
  11. Sample: Input data file for MSCD calculation

1. Sample: Bohr-Rydberg format atomic potential data file

1.458753E-04 	5.796773E+01
5.835011E-04 	5.787076E+01
1.312877E-03 	5.770851E+01
2.334004E-03 	5.748013E+01
3.646882E-03 	5.718506E+01
5.251508E-03 	5.682329E+01
7.147886E-03 	5.639558E+01
9.336017E-03 	5.590395E+01
1.181589E-02 	5.535141E+01
1.458753E-02 	5.474217E+01
1.765091E-02 	5.408101E+01
(more)
1.996886E+00 	7.367796E-01
2.031167E+00 	6.740353E-01
2.065740E+00 	6.147618E-01
2.100603E+00 	5.592108E-01
2.135759E+00 	5.068808E-01
2.171207E+00 	4.580389E-01
2.206946E+00 	4.129712E-01
2.242978E+00 	3.711888E-01
2.279301E+00 	3.332452E-01
2.315915E+00 	2.989336E-01
2.352821E+00 	2.683100E-01
2.390020E+00 	2.411752E-01

This is a typical data file of muffin-tin potential for a specific kind of atom. The first column is the radius in unit of Bohr radius (a0=0.529167 Å), the second is the potential times the radius rV(r), in unit of Bohr-Rydberg (1 Rydberg energy = 13.605 eV). Calculated Electronic Properties of Metals (by V. L. Moruzzi, J. F. Janak, A. R. Williams, Pergamon Press, New York, 1978) listed calculated muffin-tin potentials for 32 elements which comprised of atoms possessing fewer than approximately 50 protons (H, Li, Be, Na, Mg, Al, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Rb, Sr, Yb, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In). Barbieri and M.A. Van Hove developed a program that can calculate muffin-tin potential for all the elements in arbitrary given environment. Zabinsky, Rehr, Ankudinov and Albers have another code to do the same calculation .

This data format is not accepted by the MSCD package. One can use utility program poconv to convert it into acceptable MSCD format.

2. Sample: MSCD format atomic potential data file

811    12   128     datakind beginning-row linenumbers
----------------------------------------------------------------
Conversion of traditional potential data to mscd format
POCONV Version 1.20 Yufeng Chen and Michel A Van Hove
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA 94720
Copyright (c) Van Hove Group 1997. All rights reserved
----------------------------------------------------------------

        Cu              Copper potential data

    r (angstrom)   rV (eV-angs)
   7.719240e-05   4.173281e+02
   3.087696e-04   4.166300e+02
   6.947312e-04   4.154619e+02
   1.235078e-03   4.138177e+02
   1.929810e-03   4.116934e+02
   2.778925e-03   4.090889e+02
   3.782425e-03   4.060097e+02
   4.940312e-03   4.024702e+02
   6.252579e-03   3.984923e+02
   7.719240e-03   3.941062e+02
   9.340279e-03   3.893463e+02
   1.111570e-02   3.842518e+02
   1.304551e-02   3.788623e+02
   1.512970e-02   3.732152e+02
   1.736828e-02   3.673450e+02
   1.976125e-02   3.612812e+02
   2.230860e-02   3.550491e+02
   2.501033e-02   3.486708e+02
   2.786645e-02   3.421666e+02
   3.087695e-02   3.355566e+02
   3.404181e-02   3.288626e+02
   3.736110e-02   3.221061e+02
   4.083475e-02   3.153089e+02
   4.446280e-02   3.084899e+02
   4.824524e-02   3.016631e+02
 (more)
   1.056686e+00   5.304310e+00
   1.074827e+00   4.852594e+00
   1.093122e+00   4.425865e+00
   1.111570e+00   4.025936e+00
   1.130173e+00   3.649196e+00
   1.148931e+00   3.297567e+00
   1.167843e+00   2.973111e+00
   1.186910e+00   2.672306e+00
   1.206131e+00   2.399138e+00
   1.225506e+00   2.152118e+00
   1.245035e+00   1.931649e+00
   1.264720e+00   1.736297e+00

This is the MSCD format muffin-tin potential data file. The first column is the radius r, and second rV(r). The last radius data point is the muffin-tin radius. One can use utility program psrm to calculate the phase shift data and subshell radial matrix element data.

3. Sample: Atomic phase shift data file

711    13     0     datakind beginning-row linenumbers
----------------------------------------------------------------
Conversion of traditional phase shift data file to mscd format
PSCONV Version 1.20 Yufeng Chen and Michel A Van Hove
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA 94720
Copyright (c) Van Hove Group 1997. All rights reserved
----------------------------------------------------------------

Cu              Copper phase shift data

   parameters: number of wave vectors and quantum momenta
   columns: k (1/angstrom)   phase (l = 0 - 41) (radian)
      105       18
   3.6204  -1.1377e+000  -2.6770e-001  -1.8500e-001   1.8400e-001
            2.6100e-002   3.2000e-003   3.0000e-004   0.0000e+000
            0.0000e+000   0.0000e+000   0.0000e+000   0.0000e+000
            0.0000e+000   0.0000e+000   0.0000e+000   0.0000e+000
            0.0000e+000   0.0000e+000
   3.7971  -1.2115e+000  -3.1390e-001  -1.7090e-001   2.2800e-001
            3.5500e-002   4.9000e-003   5.0000e-004   0.0000e+000
            0.0000e+000   0.0000e+000   0.0000e+000   0.0000e+000
            0.0000e+000   0.0000e+000   0.0000e+000   0.0000e+000
            0.0000e+000   0.0000e+000
   3.9659  -1.2804e+000  -3.5900e-001  -1.5920e-001   2.7370e-001
            4.6600e-002   7.0000e-003   8.0000e-004   1.0000e-004
            0.0000e+000   0.0000e+000   0.0000e+000   0.0000e+000
            0.0000e+000   0.0000e+000   0.0000e+000   0.0000e+000
            0.0000e+000   0.0000e+000
   4.1279  -1.3452e+000  -4.0270e-001  -1.4980e-001   3.2000e-001
            5.9300e-002   9.7000e-003   1.3000e-003   1.0000e-004
            0.0000e+000   0.0000e+000   0.0000e+000   0.0000e+000
            0.0000e+000   0.0000e+000   0.0000e+000   0.0000e+000
            0.0000e+000   0.0000e+000
   4.2837  -1.4060e+000  -4.4500e-001  -1.4290e-001   3.6580e-001
            7.3300e-002   1.2900e-002   1.8000e-003   2.0000e-004
            0.0000e+000   0.0000e+000   0.0000e+000   0.0000e+000
            0.0000e+000   0.0000e+000   0.0000e+000   0.0000e+000
            0.0000e+000   0.0000e+000
  (more)
  12.2238   2.8648e+000  -1.9691e+000  -4.4030e-001   1.5457e+000
            8.9490e-001   5.5110e-001   3.5510e-001   2.3660e-001
            1.5810e-001   1.0470e-001   6.9400e-002   4.4000e-002
            2.4600e-002   1.1600e-002   4.6000e-003   1.5000e-003
            4.0000e-004   1.0000e-004

This is a typical phase shift data file used in the mscd program. The lnum before the phase shift data body is the number of columns, i.e. number of angular momenta, of the phase shift data covered next. The first column is the wave vector in unit of Å-1. Then there are lnum columns phase shift data for angular momentum l = 0, 1, 2, ... , lnum-1. This data file can be calculated from muffin-tin potential data by using utility program psrm.

4. Sample: Atomic radial matrix data file

721    14    49     datakind beginning-row linenumbers
----------------------------------------------------------------
MSCD Version 1.00 Yufeng Chen and Michel A Van Hove
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA 94720
Copyright (c) Van Hove Group 1997. All rights reserved
----------------------------------------------------------------

        Cu 3p           Copper radial matrix data

        binding energy =   60.000 eV

            k     R(li+1)    phase(li+1)     R(li-1)    phase(li-1)
       3.0000     .12621E-01      3.0354     .10288          2.3853
       3.2500     .50804E-02      3.0557     .97612E-01      2.2698
       3.5000     .21024E-01      3.0774     .92526E-01      2.1571
       3.7500     .34854E-01      3.0961     .87650E-01      2.0480
       4.0000     .46429E-01      3.1097     .82965E-01      1.9430
       4.2500     .55824E-01      3.1173     .78436E-01      1.8422
       4.5000     .63253E-01      3.1195     .74031E-01      1.7456
       4.7500     .68969E-01      3.1173     .69739E-01      1.6531
       5.0000     .73211E-01      3.1123     .65568E-01      1.5641
(more)
      13.0000     .30214E-01      2.7179     .11032E-01      -.3539
      13.2500     .28946E-01      2.7052     .10493E-01      -.3956
      13.5000     .27731E-01      2.6928     .99809E-02      -.4364
      13.7500     .26584E-01      2.6807     .95092E-02      -.4764
      14.0000     .25510E-01      2.6687     .90855E-02      -.5156
      14.2500     .24507E-01      2.6569     .87095E-02      -.5541
      14.5000     .23563E-01      2.6451     .83720E-02      -.5920
      14.7500     .22662E-01      2.6332     .80584E-02      -.6294
      15.0000     .21788E-01      2.6213     .77529E-02      -.6662

This is a typical radial matrix data file used in mscd program. The first column is wave vector in unit of Å-1. The second and fourth columns are overlap of the radial components of the continuum orbital at lf=li±1 and initial core orbital at quantum numbers (ni,li). The third and fifth columns are phases of the dipole matrix element into the given final state lf=li±1. This data file can be calculated from muffin-tin potential data by using utility program psrm.

5. Sample: single-curve experimental photoelectron diffraction data file

311    19    94     datakind beginning-row multi-curves
----------------------------------------------------------------
MSCD Version 1.00 Yufeng Chen and Michel A Van Hove
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA 94720
Copyright (c) Van Hove Group 1997. All rights reserved
----------------------------------------------------------------
 angle-resolved photoemission extended fine structure (ARPEFS)
 experimental data of Cu(111)-3p
 provided by Tony Huff (LBL) on March 10, 1995

   intial angular momentum (l) =  1
   photon polarization angle (polar,azimuth) = (   10.0,   0.0 ) (deg)
   sample temperature = 80 K

   photoemission energy scan curves
     (curve point theta phi weightc weighte//k intensity chiexp)
      1    94   94    1    1    1  ncurve npoint nk ntheta nphi nangle
    1    94    0.0    0.0   1.00    0.0   ----------------------------
     5.16    6.9078e+03    1.0875e+04   -3.6480e-01
     5.23    7.3998e+03    1.0743e+04   -3.1121e-01
     5.30    9.9001e+03    1.0611e+04   -6.7006e-02
     5.38    1.1573e+04    1.0460e+04    1.0641e-01
     5.45    8.9564e+03    1.0327e+04   -1.3273e-01
     5.52    8.5899e+03    1.0193e+04   -1.5731e-01
     5.59    1.3468e+04    1.0059e+04    3.3891e-01
     5.67    1.3365e+04    9.9038e+03    3.4948e-01
     5.74    9.6079e+03    9.7666e+03   -1.6247e-02
     5.81    1.0950e+04    9.6278e+03    1.3733e-01
     5.89    1.4849e+04    9.4671e+03    5.6849e-01
     5.96    1.2287e+04    9.3243e+03    3.1773e-01
     6.03    7.4261e+03    9.1795e+03   -1.9101e-01
     6.10    6.7878e+03    9.0324e+03   -2.4851e-01
     6.18    6.5566e+03    8.8613e+03   -2.6009e-01
     6.25    7.8330e+03    8.7089e+03   -1.0057e-01
     6.32    8.2807e+03    8.5537e+03   -3.1918e-02
     6.39    8.3385e+03    8.3957e+03   -6.8137e-03
(more)
    11.57    1.2998e+03    1.3109e+03   -8.4586e-03
    11.64    1.2859e+03    1.2659e+03    1.5817e-02
    11.71    1.1771e+03    1.2214e+03   -3.6271e-02
    11.79    1.1549e+03    1.1713e+03   -1.3993e-02
    11.86    1.1498e+03    1.1281e+03    1.9212e-02
    11.93    1.1678e+03    1.0856e+03    7.5674e-02

This is a typical single curve experimental energy scanning photoelectron diffraction data. The first data column is the wave vector in unit of Å-1 for energy scanning, or degree for angle scanning, second the photoelectron intensity in arbitrary unit, and third the chi data. Comments are put between the top line and data body. This file is prepared by user. User only need to organize the first two columns above from experimental data, leaving third column blank or anything. Then use utility program calchi to make the final this file which will have three columns including the chi data.

6. Sample: multi-curve experimental photoelectron diffraction data file

321    16     0     datakind beginning-row linenumbers
----------------------------------------------------------------
MSCD Version 1.00 Yufeng Chen and Michel A Van Hove
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA 94720
Copyright (c) Van Hove Group 1997. All rights reserved
----------------------------------------------------------------
 angle-resolved photoemission extended fine structure (ARPEFS)
 experimental data of Au/Fe(001)-4f 7-1/2
 provided by Scot (UCB and LBNL) on January 2, 1996

   intial angular momentum (l) =  3
   photon polarization angle (polar,azimuth) = (   10.0,   0.0 ) (deg)
   sample temperature = 80 K

   photoemission energy scan curves
     (curve point theta phi weightc weighte//k intensity chiexp)
     2   129   66    2    1    2  ncurve npoint nk ntheta nphi nangle
   1    63    4.0    0.0    1.0    0.0   ----------------------------
     5.03    1.6123e+00    1.6515e+00   -2.3718e-02
     5.14    1.5889e+00    1.7767e+00   -1.0571e-01
     5.25    1.8433e+00    1.9047e+00   -3.2218e-02
     5.35    1.9856e+00    2.0235e+00   -1.8717e-02
     5.46    2.1073e+00    2.1570e+00   -2.3052e-02
(more)
    11.19    9.8578e+00    1.0033e+01   -1.7414e-02
    11.29    1.0529e+01    1.0203e+01    3.1927e-02
    11.39    9.9936e+00    1.0376e+01   -3.6839e-02
    11.49    1.0651e+01    1.0550e+01    9.5648e-03
   2    66   49.0   45.0    1.0    0.0   ----------------------------
     5.03    1.4651e+00    1.4996e+00   -2.3031e-02
     5.14    1.3372e+00    1.6738e+00   -2.0112e-01
     5.25    1.5963e+00    1.8570e+00   -1.4038e-01
     5.35    1.9787e+00    2.0312e+00   -2.5845e-02
     5.46    2.5285e+00    2.2313e+00    1.3320e-01
 (more)
    11.50    8.4234e+00    9.6168e+00   -1.2409e-01
    11.60    1.0726e+01    9.3203e+00    1.5082e-01
    11.71    1.0449e+01    8.9901e+00    1.6228e-01
    11.81    8.9943e+00    8.6881e+00    3.5249e-02

This is a typical multi-curve experimental photoelectron diffraction data. In the top line, linenumber = 0 means multi-curve format and there will be more detail information in the beginning line of data body. The beginning line includes the number of curves in this data file, number of total points, number of energies, polar angles, azimuthal angles, and solid angles. Here only the number of curves is actually important to the utility program, the other four numbers are information and their values do not matter with utility programs. This data file is prepared by user. User only need to organize the first two columns above from experimental data, leaving third column blank or anything. Then use utility program calchi to make the final this file which will have three columns including the chi data.

7. Sample: multi-curve calculated photoelectron diffraction data file

221    25     0     datakind beginning-row multi-curves
----------------------------------------------------------------
MSCD Version 1.00 Yufeng Chen and Michel A Van Hove
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA 94720
Copyright (c) Van Hove Group 1997. All rights reserved
----------------------------------------------------------------
 angle-resolved photoemission extended fine structure (ARPEFS)
 multiple scattering calculation of Au/Fe(001)-4f
 calculated by Yufeng Chen (LBNL) on Feb 27, 1996

   initial angular momentum (l) =  3   msorder=  8   raorder=  2
   photon polarization angle (polar,azimuth) = (   10.0,   0.0 ) (deg)

   radius, depth and lattice constant =   6.5,   8.1 and   2.87 angstrom
   cluster size =  75 atoms and spacings =   1.67   1.43   1.45 angstrom
   inner potential = 14.0 V  debye and sample temperature =  250 and   80 K
   number of valence electrons =   8     bandgap energy =   0.00 eV
   density of bulk =   7.86 g/cm3     molecular weight =   55.8 amu
   effective weight for kind 1-2 =   55.8  100.0
   half aperture angle =    0.0 deg            pathcut =   0.05

   photoemission energy scan curves
     (curve point theta phi weightc weighte//k intensity chical chiexp)
      2   130   65    2    1    2  ncurve npoint nk ntheta nphi nangle
    1    65    4.0    0.0   0.50    0.0   ----------------------------
    5.03   0.40234E-01   0.13601      -0.35894E-01
    5.13   0.36652E-01  -0.42057E-01  -0.11400
    5.23   0.37891E-01  -0.74581E-01  -0.53329E-01
    5.33   0.36154E-01  -0.17466      -0.22741E-01
    5.43   0.35347E-01  -0.24193      -0.29613E-01
    5.53   0.39516E-01  -0.19987      -0.12577E-01
    5.63   0.50471E-01  -0.30496E-01  -0.25516E-02
(more)
   10.63   0.22797E-01  -0.52359E-01  -0.44186E-01
   10.73   0.22457E-01  -0.26949E-01  -0.17402E-01
   10.83   0.22534E-01   0.19074E-01   0.10278
   10.93   0.21993E-01   0.39629E-01   0.24996E-01
   11.03   0.20697E-01   0.24205E-01  -0.58363E-01
   11.13   0.19270E-01  -0.37395E-04  -0.19668E-01
   11.23   0.18210E-01  -0.73002E-02   0.48760E-02
   11.33   0.17466E-01   0.65338E-02   0.68337E-02
   11.43   0.16877E-01   0.25399E-01  -0.36356E-01
    2    65   49.0   45.0   0.50    0.0   ----------------------------
    5.03   0.55098E-01  -0.34208E-01  -0.41377E-01
    5.13   0.45696E-01  -0.20223      -0.20562
    5.23   0.43294E-01  -0.28533      -0.16978
    5.33   0.48337E-01  -0.20216      -0.55992E-01
    5.43   0.63261E-01   0.43929E-01   0.84312E-01
    5.53   0.78572E-01   0.29598       0.23821
    5.63   0.85968E-01   0.41685       0.29789
 (more)
   10.63   0.22619E-01   0.46444E-01   0.70663E-01
   10.73   0.22961E-01   0.91457E-01   0.19225E-01
   10.83   0.22794E-01   0.11120       0.21271
   10.93   0.21638E-01   0.80177E-01   0.29176
   11.03   0.19488E-01  -0.50229E-02  -0.34999E-01
   11.13   0.17298E-01  -0.97507E-01  -0.21867
   11.23   0.16403E-01  -0.12589      -0.21111
   11.33   0.17629E-01  -0.58692E-01  -0.17506
   11.43   0.18816E-01   0.25788E-01  -0.93343E-01


fitted parameters ( nfit = 3 )

   rfac =  0.39062      afac =  0.18539      bfac =  0.50790E-01

    0    14.00    250.0    2.870           general vinner tdebye lattice
    1  0.58106  0.70711  1.00000  1.00000  layer spacing length unita unitb
    2  0.49878  0.00000  1.00000  1.00000  layer spacing length unita unitb
    3  0.50505  0.70711  1.00000  1.00000  layer spacing length unita unitb
    4  0.50000  0.00000  1.00000  1.00000  layer spacing length unita unitb
    5  0.50000  0.70711  1.00000  1.00000  layer spacing length unita unitb
    6  0.50000  0.00000  1.00000  1.00000  layer spacing length unita unitb
                                           unit: lattice constant

   rfac=sum((chic-chie)*(chic-chie))/sum(chie*chie)
   afac=sum((chic-chie)*(chic-chie))/(sum(chic*chic+chie*chie)
   bfac=sum(chic*chic-chie*chie)/sum(chic*chic+chie*chie)

 fitting history (159 trials )

   1  factors =     1.780993      0.9328943     -0.4761169E-01   Netsearch
      fitvars =    0.5235772      0.4477706      0.4550710
   2  factors =     1.651645      0.9087319     -0.1003962       Netsearch
      fitvars =    0.5235772      0.4477706      0.4803527
   3  factors =     1.714074      0.9636106     -0.1243512       Netsearch
      fitvars =    0.5235772      0.4477706      0.5056344
(more)
 127  factors =    0.3890323      0.1848499      0.4969384E-01   Downhill
      fitvars =    0.5817524      0.4975229      0.5056344
 128  factors =    0.7254332      0.3553312      0.2036142E-01   Downhill
      fitvars =    0.5526648      0.5223990      0.5309161
 129  factors =    0.7458019      0.3875329     -0.3923824E-01   Downhill
      fitvars =    0.6108400      0.4726467      0.5574619
(more)
 156. factors =    0.3650445      0.1877514     -0.2864927E-01   Marquardt
      fitvars =    0.5895040      0.4985123      0.5076532
 157. factors =    0.3410145      0.1778389     -0.4299886E-01   Marquardt
      fitvars =    0.5826772      0.5044975      0.5076532
 158. factors =    0.3933392      0.1863439      0.5250285E-01   Marquardt
      fitvars =    0.5810603      0.4987825      0.5111004
 159. factors =    0.3906236      0.1853918      0.5079023E-01   Marquardt
      fitvars =    0.5810603      0.4987825      0.5050498

This calculation took 007 CPU hours on a Sun Unix system
     starting on Mon Feb 26 09:16:28 1996
   and ending on Tue Feb 27 06:55:46 1996

This is a typical calculation output of photoelectron diffraction data after a fitting procedure using mscd program. The first part is the top line, header. The linenumber=0 means multi-curve format and there will be more information in the beginning line of data body. The second part is the comment before the data body, which includes all the necessary parameters used in the calculation. The third part is the photoelectron diffraction data, with the first column wave vector in unit of Å-1 for energy scanning (degree for angle scanning), second column intensity in arbitrary unit, third column the chi value, and fourth the corresponding experimental chi value. Following is the fourth part, detail information of the fitting procedure, includes the best fitted parameter and R-factors, the history of the fitting procedure (their try values and R-factors), and the CPU time, starting, ending time, machine name carried out the calculation.

8. Sample: Batch input data file for MSCD calculation

751    10    24     datakind begining-row linenumbers
----------------------------------------------------------------
MSCD Version 1.20 Yufeng Chen and Michel A Van Hove
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA 94720
Copyright (c) Van Hove Group 1997. All rights reserved
----------------------------------------------------------------

     Batch of input files for calculation

in01	inytb001.txt	input data file
in02	inytb002.txt	input data file
in03	inytb003.txt	input data file
in04	inytb004.txt	input data file
in05	inytb005.txt	input data file
in06	inytb006.txt	input data file
in07	inytb007.txt	input data file
in08	inytb008.txt	input data file
*n09	inytb009.txt	input data file
*n10    inytb010.txt    input data file
*n11    inytb011.txt    input data file
*n12    inytb012.txt    input data file
*n13    inytb013.txt    input data file
*n14    inytb014.txt    input data file
*n15    inytb015.txt    input data file
*n16    inytb016.txt    input data file
in17    inytb017.txt    input data file
in18    inytb018.txt    input data file
in19    inytb019.txt    input data file
in20    inytb020.txt    input data file
*n21    inytb021.txt    input data file
*n22    inytb022.txt    input data file
*n23    inytb023.txt    input data file
*n24    inytb024.txt    input data file
in25    inytb025.txt    input data file
in26    inytb026.txt    input data file
in27    inytb027.txt    input data file
in28    inytb028.txt    input data file
in29    inytb029.txt    input data file
in30    inytb030.txt    input data file
*n31    inytb031.txt    input data file
*n32    inytb032.txt    input data file

This is a typical batch file including a batch of jobs for mscd program. The first column is the introductory name telling mscd program using the following data file (second column) as input data file for this job. If the introductory name start with *, the job will be skipped.

9. Sample: Input file for phase shift and radial matrix element calculation

821    11    11     datakind beginning-row linenumbers
 --------------------------------------------------------------
		  David A. Shirley's group
	      Pennsylvania State University (PSU)
	  Lawrence Berkeley National Laboratory (LBNL)
     Copyright (c) 1995-1996 DAS group. All rights reserved
 --------------------------------------------------------------

     input file for phase shift or radial matrix calculation

'po'	'pofe.txt'		input potential data file
'ps'	'psfe.txt'		output phase shift data file
'rm'	'rmfe3p.txt'		output radial matrix data file
'ei'	'eife3p.txt'		output eigen function data file
'ss'	'3p'			subshell and initial state
'sb'	'Fe'			symbol of atom
'at'	'Iron'			name of atom

20	1			lnum,outputfile (0 phase 1 radial matrix)
3.0	15.0	0.25		kmin,kmax,kstep
100				subshell binding energy

This is a typical input data file for utility psrm program. Here lnum is the number of total angular momentum components for phase shift calculation. The outputfile=0 means to calculate phase shift data, outputfile=1 to calculate radial matrix element for the given subshell. The kmin, kmax and kstep are minimum, maximum and step of the wave vectors in unit of Å-1 for the phase shift data or radial matrix element data. The subshell binding energy is a initial trial binding energy which will be fitted by the program automatically. The final binding energy fitted by the program will listed in the output radial matrix element data file. This theoretical binding energy is not necessary to equal the experimental one, but will not be far away. User should check it out see if it is reasonable. If the input binding energy are far away from its real value, the program will stop and display a message saying that binding energy too large, program terminated or binding energy too small, program terminated. In these cases, user should change the input binding energy to meet the program need. In some cases, if the binding energy is extremely small (like <1 eV), the program may fail to calculate the subshell radial matrix element.

10. Sample: Input data file for hologram transformation

921    11     8     datakind beginning-row linenumbers
 --------------------------------------------------------------
		  David A. Shirley's group
	      Pennsylvania State University (PSU)
	  Lawrence Berkeley National Laboratory (LBNL)
     Copyright (c) 1995-1996 DAS group. All rights reserved
 --------------------------------------------------------------

     input file for real space hologram transformation

'sn'	'Mn-O-Mn(100)'	system name
'pe'	'exmnosh1.txt'		input photoemission chi data file
'ho'	'homnosh1.txt'		output real space hologram file

10.0	25.0	0.25		vinner(eV) cone-angle (deg) k-window
-5.0	5.0	0.2		xmin xmax xstep (angstrom)
0.0	0.0	0.0		ymin ymax ystep (angstrom)
-5.0	0.0	0.2		zmin zmax zstep (angstrom)

This is a typical input data file for hologram inversion utility program holo. The vinner is the inner potential in unit of eV. The cone-angle is full angle of the small window or small cone cross section in unit of degree. The cone-angle usually takes 25°-60°. The k-window is a Hanning window function parameter, which takes a value between 0.0 and 1.0. The k-window=0.0 means no window factor at all. The recommended value is 0.25. The xmin, xmax, xstep are minimum, maximum and step size of the points in x-direction where the real space hologram intensity will be calculated. The ymin, ymax, ystep, and zmin, zmax, zstep have the same definitions in y and z directions to define a real space of calculation. This small window method takes a set of energy scanning spectra on a grid over the full-emission hemisphere, providing a high-quality real space atomic image comparied with the constant-initial-energy spectra method. The numerical position values could be off by about 0.2 Å. If better numbers are desired, trial and error modeling (fitting) of the spectra could be done.

11. Sample: Input data file for MSCD calculation

741    10    92     datakind begining-row linenumbers
----------------------------------------------------------------
MSCD Version 1.00 Yufeng Chen and Michel A Van Hove
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA 94720
Copyright (c) Van Hove Group 1997. All rights reserved
----------------------------------------------------------------

     Au/Fe(001)-4f		Gold/Iron input file

un    "Yufeng Chen (LBNL)"      user name
sn	Au/Fe(001)-4f	        system name
ps01	psfe.txt		input phase shift data file
ps02	psau.txt		input phase shift data file
rm	rmau4f.txt		input radial matrix data file
ex      exaufefk.txt		input experimental data file
pe	peaufefk.txt		output photo emission data file

221	0	0.1		scanmode,dispmode,ftolerance

3	0	8	2	linitial,lnum,msorder,raorder
9	0	0	0	layers,finals,fitmath,trymax
5.0	12.0	0.1		kmin,kmax,kstep (per angstrom)
0.0	45.0	45.0		dthetamin,dthetamax,dthetastep (degree)
45.0	0.0	0.0		dphimin,dphimax,dphistep (degree)
10.0	0.0	1		ltheta, lphi, beampol (degree)
0.0	0.0	0.0		mtheta, mphi, acceptang (degree)
6.5	0.0	2.87		radius,depth,lattice(angs)
8	0.0	7.86	55.8	valence,bandgap(eV),density(g/cm3),mweight
55.8	197.0	55.8	55.8	effective weight for kind 1-4 (amu)
0.0     0.0      0.0     0.0    magnetization amplitude for kind 1-4
14.0	250.0	80.0	0.01	vinner(eV),tdebye,tsample(K),pathcut
0.0	0.0	0.0		fit try for vinner, tdebye and lattice

1	2	1	0	layer, kind, emitter, lineatom
0	0	0	0	latoms(xa,xb,ya,yb)
 1.0000000	  0.000000	unita(len ang) (bcc (001) structure)
 1.0000000	 90.000000	unitb(len ang) (in unit of lattice)
 0.7071068	 45.000000	origin(len ang) (in unit of lattice)
 0.0000000			interlayer spacing (unit lattice)
 0.0	0.0	 0.0		fit try for spacing, length and units

2	1	0	0	layer, kind, emitter, lineatom
0	0	0	0	latoms(xa,xb,ya,yb)
 1.0000000	  0.000000	unita(len ang) (bcc (001) structure)
 1.0000000	 90.000000	unitb(len ang) (in unit of lattice)
 0.0000000	 0.0000000	origin(len ang) (in unit of lattice)
 0.5000000			interlayer spacing (unit lattice)
 0.0	0.0	 0.0		fit try for spacing, length and units

3	1	0	0	layer, kind, emitter, lineatom
0	0	0	0	latoms(xa,xb,ya,yb)
 1.0000000	  0.000000	unita(len ang) (bcc (001) structure)
 1.0000000	 90.000000	unitb(len ang) (in unit of lattice)
 0.7071068	 45.000000	origin(len ang) (in unit of lattice)
 0.5000000			interlayer spacing (unit lattice)
 0.0	0.0	 0.0		fit try for spacing, length and units

4	1	0	0	layer, kind, emitter, lineatom
0	0	0	0	latoms(xa,xb,ya,yb)
 1.0000000	  0.000000	unita(len ang) (bcc (001) structure)
 1.0000000	 90.000000	unitb(len ang) (in unit of lattice)
 0.0000000	 0.0000000	origin(len ang) (in unit of lattice)
 0.5000000			interlayer spacing (unit lattice)
 0.0	0.0	 0.0		fit try for spacing, length and units

 (more)

This is a typical input data file for mscd program. This file is prepared by user. Here is a list of input parameters and their definitions.

scanmode Same as data_type, describes chi calculation algorithm, rotation mechanism, and scanning direction.
dispmode This parameter is used to control the program displaying intermediate messages while in calculation. In a real calculation, user can set it to 0, which only display the necessary information on screen. Setting it to 1 will disable any information display, which is used for some supercomputer. Setting it to 8 will display all the information the program can. Setting it's ten's digit (for example 10) will have the program write all intermediate infromation into a text file mscdlist.txt.
ftolerance This is tolerance parameter for controlling the Simplex Downhill and Marquardt fitting processes. Setting to 0.0 means no fitting. When the R-factor between calculation and experimental chi curves is less than sqrt(ftolerance), the Simplex Downhill process stops and fitting switches into Marquardt process. When R-factor is less than ftolerance, fitting process ceases.
linitial This is the initial state li of the photon excitation process. linitial=0 for s core level, 1 for p level, 2 for d level, and 3 for f level.
lnum This number is the number of angular momenta the mscd program will take into account in the scattering event calculation. For a real calculation, the lnum must be greater than k*rmt, where k is wave vector and rmt muffin-tin radius, which is roughly half of the inter-atomic length. Typically user need to set it to 20. Setting it to 0 means counting as many as available in the phase shift data file.
msorder This is the multiple scattering order the program will take into account. Setting it to 0 means only calculate the reference wave, ignoring all the scatterers. Setting it to 1 means single scattering. Setting it to 2 means double scattering. For a real calculation, msorder is typically set to greater than 5. Setting it to 8 is recommended here.
raorder This is the Rehr-Albert approximation order to describe the curved-wave expansion. Setting it to 2 is recommended in a real calculation. Setting it to 0 equivalent to point scattering theory. Setting it to -1 equivalent to plane wave theory.
layers This is the number of total logical layers of the system.
finals This parameter is for test only. User should use 0 to perform a real calculation. Setting it to 1 means accounting only (li+1) final state only, 2 accounting (li-1) state only, 3 accounting reference only, ignoring all the scatterers, 4 accounting only scattering wave, ignoring reference wave.
fitmath This is a parameter to choose the method of fitting process. Setting it to 1 means to do finest Marquardt fitting only, 2 to do both fine Simplex downhill fitting and then the finest Marquardt fitting, 3 to do all the coarse grid search and then the fine Simplex downhill and then the finest Marquardt fittings, 4 to do coarse net search only, 5 to do a net search of emission angle deviation. User can set it to 0 means default process, which is equivalent to 2 in the current version.
trymax This is the maximum number of tries of the fitting procedure. If the R-factor never be less than the given tolerances, the fitting procedure will cease after doing a number of tries defined by trymax. Setting it to 0 means default, which value depends on the fitting method and number of fitting parameters.
(kmin, kmax, kstep), (dtmin, dtmax, dtstep), (dpmin, dpmax, dpstep) These are minimum, maximum and stepsize of wave vector k in unit of Å-1, and theta, phi angles of the analyzer in unit of degree. The minimum value must be less than the maximum value. If the stepsize=0.0, the maximum value will adjusted automatically to equal the minimum value.
ltheta, lphi, mtheta, mphi The polar and azimuthal angles of the photon polarization (e vector) and magnetization (theta(p) and phi(p), theta(m) and phi(m)) with respect to a reference direction in unit of degree. The surface normal serves this reference direction if the surface normal is fixed, otherwise the analyzer direction serves this reference. The mtheta and mphi have not implemented in this version. Set them to 0.0.
beampol The polarization of the photon beam source. Set beampol to 0 or 1 means linear polarization, 2 means left circular, 3 means right circular, 4 for both left and right circular.
accepang This is the half angle of the cross section of the analyzer instrumental aperture in unit of degree.
radius, depth These are radii of both axes of the semi-ellipse section of the cluster in unit of Å. On the first layer, the cluster covers a circle with this radius. Setting depth=0.0 means using default value which depends the analyzer direction. Changing this radius will change the cluster size. When doing a batch of calculations on same sample but different emission angles, you had better to set a fixed radius and a fixed depth values to ensure the clusters are same for all these calculations. For a real calculation, cluster size should be at least 70 atoms.
lattice This is the lattice constant of the crystal structure in unit of Å, serving the unit for all other length structural parameters. Because it serves unit for others, it is not necessary to use the same definition as in crystallography.
valence This is the number of valence electrons of the molecular or atom in bulk when using TPP-2 formula, or the exponent of energy m (0.5-0.9) when using attenuation equation lamda=k*Em. Setting it to 0 means ignoring inelastic scattering effect.
bandgap This is the band gap energy in eV (equals 0.0 for metal) when using TPP-2 formula, or the coefficient of energy k (0.02-0.3) using attenuation equation lamda=k*Em.
density This is the density of the bulk material in (g/cm3).
mweight This is the molecular weight of the bulk material (in amu).
effective weight This is the effective atomic weight for specified atom (in amu).
magnetization amplitude This is the magnetization amplitude for specified atom. This feature is not available in this version, set them to 0.
vinner This is the inner potential in eV.
tdebye and tsample These are debye and sample temperatures of the bulk in K.
pathcut Pathcut is a threshold to cut those small contribution events or paths. Set it to zero means doing full calculation without any cut. A non-zero value means that the higher orders of multiple-scattering would not be calculated. Generally, lower kinetic energies will require lower pathcut values to obtain the full multiple-scattering calculation results. For simulating typical energy-scan photoelectron diffraction data where k > 5 Å-1 (kinetic energy (KE) > 100 eV), pathcut = 0.05 works well if you are most interested in optimizing the calculation speed. However, note that for k < 4 Å-1 (KE < 60 eV), pathcut = 0.01 may be too high for some applications. For low-energy angle-scan photoelectron data where 3 Å-1 < k < 4 Å-1 (40 eV < KE < 60 eV), you may need to set the pathcut as low as 0.001 to obtain the correct multiple-scattering calculation results. The general recommendation is to set pathcut = 0.01. But be alert! The world needs more lerts.
fit try for vinner, tdebye and lattice These parameters are used to choose the actual fitting parameters. Setting to 0.0 means no fit for the corresponding parameter. A positive value serving the relative fitting stepsize for net search or simplex downhill fitting process. The stepsize equals this value times the corresponding initial value. The negative value will be treated as 0.0.
layer, kind, emitter, lineatom, latoms(xa,xb,ya,yb) Here layer indicates the serial number of the current logical layer. The kind indicates the kind of atom of current layer (kind=1 always refer to bulk atom). The emitter=1 indicates that there is emitter in this logical layer, emitter=0 means no emitter. The lineatom and latoms(xa,xb,ya,yb) are typically for test only. When cluster radius set to 0.0, they provide two alternative way to choose the cluster for calculation.
unita, unitb (length and angle) These parameters define the unit cell vectors for the current logical layer, consists of their length in unit of lattice constant and the angle with respect to the x-axis direction.
origin (length and angle) The length and angle determine the origin of the current logical layer with respect to the absolute sample origin. The length uses unit of lattice constant, angle uses degree.
interlayer spacing This is the spacing between current and previous logical layer, in unit of lattice constant. The layer spacing of the first logical layer is the spacing between the first layer and the virtual surface plane.
fit try for spacing, length and units Here are more fitting parameters to control fitting process for inter-layer spacing, length between the layer origin and sample origin, and scaling factor for both unit vectors. Setting to 0.0 means no fit. A positive value serving the relative fitting stepsize for net search or simplex downhill fitting process. The stepsize equals this value times the corresponding initial value. The negative value means the corresponding parameter of current logical layer always equal the corresponding parameter of the previous logical layer.

Return to Van Hove home page